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ABSTRACT
◥

Purpose: DNA methylation alterations have emerged as front-
runners in cell-free DNA (cfDNA) biomarker development. How-
ever, much effort to date has focused on single cancers. In this
context, gastrointestinal (GI) cancers constitute the second leading
cause of cancer-related deaths worldwide; yet there is no blood-
based assay for the early detection and population screening of GI
cancers.

Experimental Design: Herein, we performed a genome-wide
DNA methylation analysis of multiple GI cancers to develop a
pan-GI diagnostic assay. By analyzing DNA methylation data
from 1,781 tumor and adjacent normal tissues, we first identified
differentially methylated regions (DMR) between individual GI
cancers and adjacent normal, as well as across GI cancers. We
next prioritized a list of 67,832 tissue DMRs by incorporating all
significant DMRs across various GI cancers to design a custom,

targeted bisulfite sequencing platform. We subsequently validat-
ed these tissue-specific DMRs in 300 cfDNA specimens and
applied machine learning algorithms to develop three distinct
categories of DMR panels

Results: We identified three distinct DMR panels: (i) cancer-
specific biomarker panels with AUC values of 0.98 (colorectal
cancer), 0.98 (hepatocellular carcinoma), 0.94 (esophageal squa-
mous cell carcinoma), 0.90 (gastric cancer), 0.90 (esophageal ade-
nocarcinoma), and 0.85 (pancreatic ductal adenocarcinoma); (ii) a
pan-GI panel that detected all GI cancers with an AUC of 0.88; and
(iii) amulti-cancer (tissue of origin) prediction panel, EpiPanGIDx,
with a prediction accuracy of 0.85–0.95 for most GI cancers.

Conclusions: Using a novel biomarker discovery approach, we
provide the first evidence for a cfDNAmethylation assay that offers
robust diagnostic accuracy for GI cancers.

Introduction
Despite improved overall survival rates due to recent advancements

in cancer therapies, cancer remains the second leading cause of
mortality worldwide (1). At present in the United States, average-
risk or asymptomatic population screening is recommended for only
colorectal, breast, cervical, lung, and prostate cancers (2). Population
screening for low prevalence cancers is challenging due to a lack of
cost-effective diagnostic tools (3). Thus, to facilitate population screen-
ing and thereby eradicate the mortality associated with cancer, a
universal cancer screening test that is noninvasive, simple, and robust
is urgently needed.

Circulating tumor DNA released into the bloodstream by a
tumor cell carries both a genetic and an epigenetic signature of

the cell of origin, and is therefore becoming a key tool in developing
liquid biopsy–based biomarkers for early detection and treatment
monitoring (4). Unfortunately, the diversity of genetic mutations
across cancers and the prevalence of these mutations across large
genomic regions makes it challenging to develop mutation-based,
pan-cancer diagnostic tests (5). In contrast, epigenetic DNA meth-
ylation changes occur in specific genomic regions called CpG
islands and can be consistently measured using bisulfite sequencing
in various biological fluids, including plasma, serum, urine, and
saliva. Because of their high cancer specificity, and their appearance
during the earliest phases of cancer development, aberrant DNA
methylation alterations provide an excellent avenue by which to
develop pan-cancer liquid biopsy–based diagnostic markers (6, 7).
However, most recent studies investigating plasma cell-free DNA
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(cfDNA) methylation patterns for biomarker development have
focused on only individual cancers (8–10), whereas few investigated
multiple cancers (11, 12).

Gastrointestinal (GI) cancers, including colorectal cancer, hepa-
tocellular carcinoma (HCC), esophageal squamous cell carcinoma
(ESCC), gastric cancer, esophageal adenocarcinoma (EAC), and
pancreatic ductal adenocarcinoma (PDAC) constitute the second
leading cause of cancer-related deaths worldwide, yet there is no
blood-based assay for early detection and/or population screening
of GI cancers. Because of their generally low prevalence and lack of
cost-effective screening tools, except for colorectal cancer (13), most
GI cancers present at a late stage, leading to a high mortality rate,
and underscoring the need for improved screening tools. Most
studies to date investigated genome-wide methylation patterns at
the tissue level in individual cancers, subsequently selecting the
most significant tissue markers for testing in the cfDNA of the
corresponding cancer type. In this way, these single-cancer studies
failed to analyze DNA methylation patterns in an unbiased
and comprehensive manner, and thereby lack the ability to
discover pan-cancer-specific markers. To address this challenge
and to identify methylation markers across GI cancers, we per-
formed a genome-wide DNA methylation analysis of multiple GI
cancers, which we used to develop a novel cfDNA methylation
biomarker panel for the early detection of individual GI cancers, a
pan-GI diagnostic panel, and a multi-GI cancer prediction panel
(EpiPanGI Dx).

Materials and Methods
Patients and clinicopathologic data

Whole-genome 450K tissue DNA methylation data across six GI
cancers (colorectal cancer, HCC, ESCC, gastric cancer, EAC, PDAC)
and adjacent normal tissues were obtained from The Cancer Genome
Atlas (TCGA) and GSE72872 dataset (14). Complete clinical, epide-
miologic, molecular, and histopathologic data are available at TCGA
website: https://tcga-data.nci.nih.gov/tcga/. Retrospective plasma
cfDNA specimens collected from 300 patients with the six GI cancers
and healthy age-matched controls were collected from various insti-
tutes.Written informed consent was obtained from all patients and the

study was approved by the Institutional Review Boards of all partic-
ipating institutions. The study adhered to Declaration of Helsinki
ethical guidelines.

Specimen processing of patient plasma samples
Plasma samples were transferred to 2-mL microcentrifuge tubes

and centrifuged at 16,000 � g for 10 minutes at 4�C to remove any
cellular debris. Circulating cfDNA (10–100 ng) was extracted from
1–2 mL plasma using the QIAamp Circulating Nucleic Acid kit
(Qiagen) and quantified using the Quant-iT high-sensitivity Pico-
green double-stranded DNA Assay Kit (Invitrogen by Thermo
Fisher Scientific). For targeted methylation sequencing, 10 ng plas-
ma cfDNA was first bisulfite treated using the ZYMO Gold Kit. A
Swift Bioscience Methyl-Seq library preparation kit was adapted to
generate individual libraries incorporating 13 PCR cycles and
overnight ligation. Custom-targeted CpG methylation probes were
designed using the Roche Nimblegen target capture kit, Custom
SeqCap Epi Choice 30 MB. Libraries were quantified using the
Quant-iT high-sensitivity Picogreen double-stranded DNA Assay
Kit before equimolarly pooling 10 individual libraries per capture
consisting of 2 mg total DNA. Hybridization and capture were
performed using VK SeqCap Epi Reagent Kit Plus and SeqCap EZ
hybridization/wash kit from Roche Nimblegen. For blocking, a
universal blocker (IDT technologies) was used. Pooled libraries
were sequenced on an Illumina NovaSeq S4 using paired-end, 100-
bp reads, incorporating 150 individual libraries per lane. Sequenc-
ing matrices including the coverage distribution and methylation
ratio distribution of gitBS in all plasma samples are included in
Supplementary Figs. S1 and S2.

Plasma-targeted bisulfite data processing, differentially
methylated region calling, and visualization

For each plasma sample, after trimming adaptor and low-quality
bases, BSMAP (2.90) was used to align bisulfite sequencing reads to the
hg19 human genome assembly. Themethylation ratio of CpG sites was
calculated using the methratio.py script (from BSMAP package). CpG
methylation ratios supported by less than 4 reads were discarded
before downstream analysis. Metilene (0.2–7) was used for calculating
de novo differentially methylated regions (DMR) between two con-
ditions, for example, normal versus cancer. For each CpG site, at least
three samples of each condition must have a nonmissing value.
Missing values were imputed using Metilene during DMR calling.
Because themethylation difference between normal and cancer tissues
is typically diluted in plasma, we selected DMRs based on a relatively
loose cut-off (absolute methylation difference more than 0.1 and P
value less than 0.05) for downstream analysis. Themethylation level of
a DMRwas represented as themeanmethylation ratio of its CpG sites.
The z-score of each DMR methylation level was used for heatmap
visualization. Ward clustering and Euclidean distance were used for
heatmap plotting.

Machine learning methods used for developing various GI
cancer detection panels
Feature selection for individual GI cancer detection and pan-GI
cancer detection

For individual GI cancer prediction, normal and cancer plasma
samples were randomly partitioned into a training set (70%) and a test
set (30%).Within the training set only, DMR identification and feature
selection (using the “Boruta” R package to select the top 200 infor-
mative DMRs) were performed in normal and cancer plasma samples
for each GI cancer. For pan-GI cancer detection, samples from the
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Gastrointestinal (GI) cancers constitute the second leading
cause of cancer-related deaths worldwide, yet there is no blood-
based assay for early detection and/or population screening of all
GI cancers. Because of their generally low prevalence and lack of
cost-effective screening tools, except for colorectal cancer, most GI
cancers present at a late stage, leading to a high mortality rate, and
underscoring the need for improved screening tools. Owing to their
high cancer specificity, DNAmethylation alterations have emerged
as front-runners in cell-free DNAbiomarker development. Herein,
we performed a genome-wide DNA methylation analysis of mul-
tiple GI cancer tissues, and subsequently validated the tissue-
specific DMRs in 300 cell-free DNA specimens by designing a
custom, targeted bisulfite sequencing platform. In summary, we
developed a robust, sensitive, targeted methylation-based assay for
multi-GI cancer detection. Our EpiPanGI Dx assay needs further
validation in completely independent retrospective and prospec-
tive datasets for clinical translation as early diagnostic markers.
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training sets or testing sets for each GI cancer were pooled into a single
pan-GI training set or testing set, respectively. Using the training set,
DMRs identified from each GI cancer were also pooled, for a total of
approximately 8,000 DMRs for feature selection (using the Boruta R
package to select the top 200 informative DMRs).

Feature selection for multi-GI cancer classification
Plasma samples from six GI cancers and healthy people were used

for classification analysis. ESCC and EAC were combined as one class,
given their high similarity. Plasma samples from each class were
randomly partitioned into a training set (70%) and a test set (30%)
independently. Using the training set, class-specific DMRs were
identified by one-versus-rest comparisons. Approximately 4,000
DMRs identified from all classes were pooled together and the top
200 informative DMRs were selected (using Boruta R package with
default parameters) for downstream GI cancer classification.

Feature selection using the Boruta R package
After splitting the data into training and test sets, the Boruta R

package was used to select the most informative DMRs from the
training set for cancer detection. Given the randomness introduced by
missing value imputation and random forest construction, we repeated
the feature selection step 50 times and finally choose the top 200DMRs
that were most frequently selected by the Boruta algorithm for
subsequent analyses.

Prediction model training and evaluation
Training sets were used to train random forest (R package “ranger”)

models for individual GI cancer prediction, pan-GI cancer prediction,
and multi-GI cancer classification, respectively. The hyperparameters
were tuned by 10-fold cross-validation. For model evaluation, the
remaining 30% test sets were used to plot the ROC curve and calculate
the AUC scores for each random forest model. The training-test set
split, DMR calling, and feature selection were repeated 10 times to
avoid overestimating model performance.

Independent cohort validation
PDAC patient samples were from two independent cohorts [58

samples from University of Pittsburgh (Pittsburgh, PA) and 16
samples fromMedical College ofWisconsin (MCW,Milwaukee,WI)].
The PDACPittsburg cohort, whichhasmore patient samples, was used
for DMR calling, feature selection (top 200 informative DMRs), and
model training. The AUC scores for this model in detecting cancer
were calculated using the PDAC MCW cohort.

Early-stage cancer prediction
For colorectal cancer, HCC, gastric cancer, and PDAC, cancer

stage information was available and therefore we looked at the
early-stage cancer prediction accuracy in these four cancers.
For this, we took all late-stage (stage IV) cancer samples, along
with 70% of the normal plasma samples for DMR calling, feature
selection (top 200 informative DMRs), and model training. The
performance of the trained model was then evaluated using the
early-stage (stage I–III) cancer samples and the remaining 30% of
normal samples.

Informative DMR validation using cancer tissue data
Calculated beta values of 450K methylation array data for

TCGA-COAD, TCGA-LIHC, TCGA-ESCA, TCGA-STAD, and
TCGA-PAAD were downloaded from the UCSC Xena database.
Calculated beta values of 450K methylation array data for EAC was

downloaded from Gene Expression Omnibus (GEO; GSE72872).
The 450K CpG sites were mapped to the informative DMRs
selected for individual GI cancer detection, pan-GI cancer detec-
tion, and multi-GI cancer classification. The methylation level of
the informative DMRs for each cancer tissue sample was calculated
by taking the mean of the mapped CpG site beta values. The
normal and cancer tissue samples were randomly partitioned into a
training (70%) and test set (30%) manner. We trained a random
forest model with the training set and calculated the AUC scores of
the model with the remaining test set.

Data availability
All data associated with this study are presented in the article or

Supplementary Materials and Methods. The raw plasma cfDNA gitBS
sequencing data reported in this article have been deposited into the
GEO, under accession number GSE149438.

Results
Development of a GI-targeted bisulfite sequencing panel

The study design describing tissue discovery, followed by plasma
cfDNA validation, is illustrated in Fig. 1; Supplementary Fig. S1A.We
first analyzed 450K methylation array data from 1,781 tumor and
adjacent normal tissues from six differentGI cancers: colorectal cancer,
HCC, ESCC, GC, EAC, and PDAC. By comparing data from tumor
versus normal tissues within each GI cancer, as well as across all GI
cancers, we identified a total of 67,832 regions of interest (ROI), based
on significant differentially methylated probes with a P < 0.001 and an
absolute delta beta of 0.20 across all the comparisons (Supplemen-
tary Table S1 and S2). The covered regions were highly enriched for
promoters as well as gene body regions (Supplementary Fig. S3B),
which are more susceptible to aberrant methylation during onco-
genesis. We merged overlapping tissue-level ROIs from the various
GI cancers to design a targeted SeqCap Epi-based bisulfite sequenc-
ing platform, which we termed the “GI-targeted bisulfite sequencing
(gitBS)” panel (Supplementary Table S3). Compared with a previ-
ously reported strategy (10), we used a meticulous analysis of
every significant probe identified via a 450K tissue analysis across
six GI cancers to build our gitBS panel, which included a much
broader genomic region (�30 MB) covering approximately 1% of
the human genome.

Evaluation of gitBS in plasma cfDNA
To evaluate the comprehensive list of tissue-specific markers in

plasma cfDNA, we performed gitBS on 300 total plasma samples
collected from patients with colorectal cancer, HCC, ESCC, gastric
cancer, EAC, or PDAC, and age-matched controls (Supplementary
Table S4). In comparing the individual GI cancers with controls, we
identified a total of 216,887 differentially methylated CpGs con-
sisting of 10,677 DMRs, in colorectal cancer (5,689), HCC (1,072),
ESCC (1,063), gastric cancer (949), EAC (1,177), and PDAC (727;
Supplementary Table S5). To confirm the diagnostic power of
the identified DMR panels across each GI cancer, we performed
hierarchical clustering based on the identified DMRs for each GI
cancer type. For most GI cancers, we observed a clear separation of
two clusters representing cancer versus normal samples (Supple-
mentary Figs. S4–S8). For PDAC, although the boundary between
cancer and normal clusters was less clear, most PDAC samples
clustered together (Supplementary Fig. S9). Overall, our results
indicate that these DMRs could be used as potential biomarkers
for GI cancer detection.

cfDNA Methylation Classifier in Gastrointestinal Cancers
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Development of cfDNA methylation panels for individual GI
cancer detection

To develop plasma-specific DMR panels for individual GI cancer
detection, we used machine learning algorithms. Briefly, we have split
plasma samples frompatients withGI cancer and healthy controls into
training (70%) and test sets (30%). De novo DMRs between GI cancer
and healthy controls were identified only with samples from training
sets. Next, we performed feature selection based on the Boruta

algorithm, which is known to be powerful for biological features (15).
We then used the chosen DMRs to train a random forest model, which
outperformed several othermachine learning techniques for GI cancer
detection, such as logistic regression model, support vector machine
and K-nearest neighbor models (Supplementary Fig. S10). We used
PDAC for this comparison because PDAC plasma samples are not
well separated from healthy controls based on the clustering result
(Supplementary Fig. S9). Finally, we evaluated prediction model

Figure 1.

Study design depicting tissue discovery and plasma validation of
EpiPanGI Dx. Genome-wide 450K DNA methylation analysis on
individual GI cancers versus adjacent normal tissues and across six
GI cancers resulted in the identification of 67,832 DMRs of interest.
Subsequently, we developed a custom plasma-specific gitBS target
enrichment panel to evaluate in plasma cfDNA (n ¼ 300). This
resulted in the identification of plasma DMR panels for the detection
of individual GI cancers, pan-GI cancers, and tissue of origin using
machine learning algorithms.

Kandimalla et al.
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performance by calculating area under the ROC curve (AUC) scores
using the test set samples. We repeated the entire process 10 times to
prevent biases due to dataset splitting. Our cancer prediction models
achieved the best performance for colorectal cancer and HCC, with
medianAUC scores of 0.98; predictionmodels for the other GI cancers

had median AUC scores of 0.94 (ESCC), 0.90, (gastric cancer), 0.90
(EAC), and 0.85 (PDAC), which is higher or comparable to previous
reports (Fig. 2A; refs. 11, 16).

We subsequently applied the plasma derived DMR panels estab-
lished using machine learning to distinguish GI cancer tissues from

Figure 2.

Individual GI cancer detection accuracy using informative plasma DMRs identified from gitBS. A, Prediction accuracy of themachine learning model trained for each
GI cancer. Samples (n¼ 300) were randomly partitioned into a training set (70%) and a test set (30%) 10 times. DMR calling, feature selection, and model training
were performed on the training sets. Boxplots show prediction model AUC scores calculated in test sets for each GI cancer. Sample size: colorectal cancer (40),
PDAC (74), HCC (43), EAC (12), ESCC (48), gastric cancer (37), normal (46). B, Use of the informative plasma DMRs from A to predict cancer in GI cancer tissues
dataset (n ¼ 1,781). Boxplots show AUC scores of 10 independent runs. C and D, Representative ROC curve (left) and AUC score (right) for the PDAC independent
validation set (10 runs). E, Late-stage (stage IV) plasma samples, along with randomly selected 70% normal plasma sample, were used for DMR calling, feature
selection, andmodel training. Thiswhole processwas repeated for 10 times to avoid bias due to sample selection. Boxplots showAUC scores of predictionmodels on
early-stage (stage I–III) plasma samples (colorectal cancer: 29; HCC: 36; GC: 16; PDAC: 35). F,Use of informative plasma DMRs from E to predict cancer in early-stage
GI cancer tissues (n ¼ 1,257). GC, gastric cancer.
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adjacent normal tissues. As expected, the median AUC scores of
models for each of the GI cancers were 0.99 (colorectal cancer),
0.99 (HCC), 0.90 (ESCC), 1.00 (gastric cancer), 0.97 (EAC), and
0.94 (PDAC). Consistent with the performance of the PDAC model
in plasma, the model performed relatively poorly at predicting PDAC
in tissue (Fig. 2B). Therefore, we tested the PDAC DMRs in another
independent plasma cohort. Interestingly, the machine learning mod-
el, trained and tested with PDAC plasma samples from the first cohort,
achieved even higher prediction accuracy in the independent PDAC
cohort, with an AUC of 0.89 (Fig. 2C and D).

Given that the ultimate goal of cancer screening is to identify cancer
at an early stage, we evaluated the ability of the plasma DMRs to detect
early-stage GI cancers in colorectal cancer (29), HCC (36), gastric
cancer (16), and PDAC (35). We did not have access to early-stage
EAC and ESCC and hence are not tested. Ourmodels achievedmedian
AUC scores of 0.92 (colorectal cancer), 0.99 (HCC), 0.87 (gastric
cancer), and 0.73 (PDAC) for predicting early-stage plasma samples in
the test set (Fig. 2E). When applied to early-stage tumor tissues in the
same fourGI cancers, theDMRpanels achievedmedianAUCvalues of
0.99 (colorectal cancer), 0.99 (HCC), 0.99 (gastric cancer), and 0.94
(PDAC; Fig. 2F). Altogether, these results indicate that DNA meth-
ylation aberrations we identified have great potential for detecting
individual GI cancers along with early-stage cancers.

Development of a pan-GI cancer detection model
Having performed this study in individual GI cancers, we next used

our DMR data to identify a pan-GI classifier. To do this, we pooled the
training sets and test sets used for each individual GI cancer prediction
model together as a pan-GI training set and test set, respectively. We
also pooled the DMRs identified from each GI cancer for pan-GI
cancer feature selection and model training. We achieved a median
AUC of 0.88 for the pan-GI cancer prediction model in the test-set
plasma cohort (Fig. 3A). Similarly, the plasma DMRs achieved an
excellent AUC of 0.98 in distinguishing pan-GI cancer tissues from
normal tissues (Fig. 3B).

Development of multi-GI cancer classification model
EpiPanGIDx

Finally, we have developed a plasma multi-GI cancer prediction
model EpiPanGIDx using random forest that in addition to identify all
GI cancers, also have the ability to reveal the tissue of origin. Given that
ESCC and EAC both develop from the esophagus, we treated them as
the same class in ourmodel. For each class versus the other GI cancers,
we identified class-specific plasma DMRs (Supplementary Table S6),
which we then pooled for feature selection and model training. In the
test set, our models classified samples into normal plasma, colorectal
cancer, PDAC, HCC and ESCC/EAC with higher accuracy than
previous studies (Fig. 4A; ref. 16). Clustering the data using a t-
SNE plot also showed clear separation ofmost GI cancers from healthy
samples and from one another (Fig. 4C). The class-specific plasma
DMRs also successfully classified GI cancer and normal tissues with
high accuracy (Fig. 4B and D). Collectively, these results prove
the feasibility of utilizing cfDNA methylation markers for not only
GI cancer detection, but also for identifying the tissue of origin of
GI cancers.

Identification of minimum DMRs needed to achieve optimal
accuracy across all GI cancers

Finally, to advance the development of powerful and cost-
effective cfDNA methylation biomarker panels for GI cancer detec-
tion, we also evaluated the performance of our models when varying
number of informative DMRs were selected for model training. For
individual GI cancer prediction models, the top 50 DMRs were
sufficient for achieving optimal accuracy for each GI cancer. Even
with as few as 10 DMRs, models for HCC or colorectal cancer
prediction still showed excellent performance, with AUC scores
>0.95 (Fig. 5; Supplementary Figs. S11–S16; Supplementary
Table S7). For both the pan-GI and multi-GI classification models,
at least the top 150 informative DMRs were required to achieve the
optimal performance (Fig. 5; Supplementary Figs. S17–S19; Sup-
plementary Table S7).

Figure 3.

pan-GI cancer detection accuracy using informative plasma DMRs identified from gitBS. A, Plasma samples of each GI cancer were randomly partitioned into a
training set (70%) and test set (30%) 10 times. Training sets of all GI cancerswere pooled for training apan-GI cancer predictionmodel. Representative ROCcurve and
AUC scores for the combined test sets are shown. B, Use of informative plasma DMRs from A to predict pan-GI cancer in tissue samples.
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Discussion
The lack of population-based screening for all cancers is attributed

to the lowprevalence ofmany cancers in the general population (3, 17).
However, by developing sensitive multi-cancer or multi-organ diag-
nostic tests, population screening could be implemented, even for low-
prevalence cancers. In this regard, GI cancers, which encompass a
variety of cancer types, provide a unique opportunity for developing a
pan-GI diagnostic assay. Ahlquist and colleagues, showed that using a
pan-GI diagnostic assay, only 83 patients need to be screened to
diagnose 1 positive patient with GI cancer (3). Herein, we performed
a comprehensive genome-wide DNA methylation study across six GI
cancers to identify a noninvasive plasma DMR panel “EpiPanGI Dx”
that predicted tissue of origin of all GI cancers with high accuracy.

Most previous studies either studied individualGI cancers (9, 10, 18)
or selected a panel of significant tissue markers and subsequently

validated them in cfDNA using PCR-based methods (19, 20). Thus,
cancer specificity was not well studied, and those studies failed to build
multi-organ diagnostic assays to implement cost-effective population
screening tests. In contrast, we first identified every tissue-significant
CpG across sixGI cancers, followed by development of plasma-specific
diagnostic panels for the accurate detection of GI cancer tissues of
origin using a single targeted methylation test, EpiPanGI Dx. Com-
pared with previous studies (11), we selected fewer DMRs for predic-
tion, which makes our model more feasible for large-scale validation
studies and clinical practice (Fig. 5; Supplementary Figs. S11–S19).
In addition, a low cost per sample, as well as a low (10 ng) input
required for cfDNA, makes our targeted methylation assay very
feasible for clinical use.

Recent plasma cfDNA methylation studies showed that targeted
methylation sequencing is quite robust in discovering multi-tissue

Figure 4.

Multi-GI cancer tissue of origin classification using informative plasmaDMRs identified fromgitBS.A,Classification accuracy of the plasma samples frompatientswith
GI cancer. The number on the y-axis indicates the ratio of samples being correctly predicted. Light orange: sample labels were the same as the top prediction. Dark
orange: sample labels were among the top 2 predictions. B, Use of informative plasma DMRs from A to classify GI cancer tissues. C and D, t-SNE plots for plasma
samples (n ¼ 300) and GI cancer tissue samples (1,781) generated using informative plasma DMRs.
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cfDNA methylation markers. Most notably, Liu and colleagues (21).
identified tissue of origin methylation markers across 50 different
cancers. Another study used targeted methylation sequencing to
identify plasma cfDNA markers using that differentiate between
colorectal cancer, non–small cell lung cancer, breast cancer, and
melanoma (22). Shen and colleagues used a cfMeDIP-seq method to
discover plasma DMRs that differentiate between multiple solid
cancers including pancreatic, colorectal cancer, breast, lung, renal,
and bladder cancers (11). However, ours is the first study in which
organ-specific methylation markers were used to develop a multi-GI
cancer cfDNA assay. Excitingly, the detection accuracy of our
EpiPanGI Dx assay, with as few as 50 DMRs, was quite high across
all GI cancers, considering it is a multi-cancer diagnostic test.

Furthermore, our EpiPanGI Dx assay developed from plasma
cfDNA showed excellent diagnostic accuracy (AUC, 0.91–0.99)
when applied back to GI cancer tissue cohorts. Thus, the markers
we trained and validated in plasma cfDNA are highly cancer
specific. PDAC showed somewhat lower accuracy and this could
be attributed to the tumor purity and further validation of our
markers can help us refining the signatures in PDAC.

The unique strengths of our study are: (i) Comprehensive profiling
of all GI cancer tissue methylation markers followed by the develop-
ment of a targeted plasma cfDNA panel for the development of
EpiPanGI Dx. (ii) Use of machine learning algorithms with training
and validation sets, as well as using 10� cross-validation, to compute
the accuracy of the EpiPanGI Dx assay across GI cancers. (iii) In

Figure 5.

AUC plots with variable numbers of informative DMRs across GI cancers. A, Individual GI cancer prediction models. B, pan-GI cancer prediction model. C, Multi-GI
cancer tissue of origin classification model.
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addition, the assay is quite cost-effective as our models require fewer
biomarkers than previously reported studies (11) and therefore will be
more feasible for the development of diagnostic panels for large-scale
clinical usage. (iv) Our assay can be performed using as little as 10 ng
cfDNA. (v) Although the plasma samples were collected from several
different parts of the world, the detection accuracy of the EpiPanGI Dx
assay in cfDNA, as well as the performance of the test in tissue data,
shows the robustness of our markers.

Our study also has several limitations. First, the study is retro-
spective; therefore, we could not test the true population screening
ability of our models. Second, although we showed our assay to be
quite robust in identifying early-stage cancers at both the tissue and
plasma level, the number of samples used to represent each stage
was limited. Third, although many previous studies showed the
superiority of cfDNA methylation markers over genomic muta-
tions for cancer detection, we did not have the mutation profiles of
our cfDNA samples to be able to directly compare (or even
combine) the diagnostic performance of our methylation assay
relative to genomic mutations. However, in future studies, we
expect a combination of epigenomic and genomic markers to
further improve the accuracy and robustness of cfDNA-based early
detection markers.

In summary, we developed a robust, sensitive, targeted methyl-
ation-based cfDNA test for multi-GI cancer detection. Our Epi-
PanGI Dx assay needs further validation in completely independent
retrospective and prospective datasets for clinical translation as
early diagnostic markers. Further large-scale prospective validation
will pave a way to test the performance of our assay in population-
level screening for GI cancers. Nevertheless, these findings under-
score the potential utility of cfDNA methylation markers for
noninvasive, cost-effective, and early detection of GI cancers and
serve as a platform for future organ-specific methylation studies for
multi-cancer detection.
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